

Neutral Beam Etching: A Pathway to High-performance E-mode Recessed-Gate GaN MOSHEMTs for Power and RF Applications

Abstract

GaN-based E-mode transistors are highly demanded for power and RF applications due to their fail-safe property and compatibility with single-polarity voltage driving circuits. Along with p-GaN gate HEMTs, GaN recessed-gate MOSHEMTs have been regarded as another promising approach for normally-off operations, featuring wide gate swing voltages and maturity of the starting AlGaN/GaN epi-layers. Inductively coupled plasma (ICP) was commonly deployed for barrier layer thinning, however, etching damage resulting from ion bombardment and ultraviolet photons tends to degrade the device's performance. Ar-based neutral beam etching (NBE) which features focused beam of inert gas ions for precise material removal shows great potential for fine control of gate foot and mitigation of plasma-induced damage. In this work, GaN recessed-gate MOSHEMTs enabled by NBE are explicitly investigated, for both power electronics and low-noise amplifier (LNA) applications. By partially recessing AlGaN barrier, MOSHEMT show V_{th} of 1.68V, large on/off current ratio of 10⁹, and low gate leakage current for both positive and negative biases. The breakdown voltage of MOSHEMTs were increased from 208 V to 701 V as L_{gd} was extended from 2 μ m to 10 μ m. By recessing the AlGaN barrier at different depths via Ar-based NBE, the MOSHEMTs achieved V_{th} of 1.68/2.93/4.29 V, $I_{D,sat}$ of 803/661/545 mA/mm, and small R_{on} of 5.85/6.06/7.23 Ω ·mm, leading to FOM of 701/640/567 MW/cm², respectively. Compared to other state-of-the-art recessed-gate MOSHEMTs with similar V_{th} reported in the literature, the GaN MOSHEMTs in this study demonstrated the highest $I_{D,sat}$ in its class and superior FOM. For LNA applications, recessed-gate MOSHEMT ($L_g = 1.2 \mu$ m & $V_{th} = 0.5$ V) showed cut-off frequency (f_t/f_{max}) of 9.6/27.8 GHz, along with a minimum noise figure (NF_{min}) of 1.48 dB, an associated gain (G_a) of 14.43 dB, an equivalent noise resistance (R_n) of 40.2 Ω , and an input 3rd-order interception point of 10.3 dBm at 2 GHz, benefiting from mitigation of surface defects generated during etching. At 3.5 GHz, NF_{min} slightly increased to 1.95 dB. In summary, this work highlights that Ar-based NBE gate recessing offers a promising pathway to achieving high performance E-mode GaN MOSHEMTs for power conversion and LNA applications. Ref. [1] Gao *et al.*, IEEE EDL, Vol.45, Iss.6, 2024. [2] Ye *et al.*, IEEE TED, Vol.72, Iss.3, 2025.

Neutral Beam Etching: A Pathway to High-performance E-mode Recessed-Gate GaN MOSHEMTs for Power and RF Applications

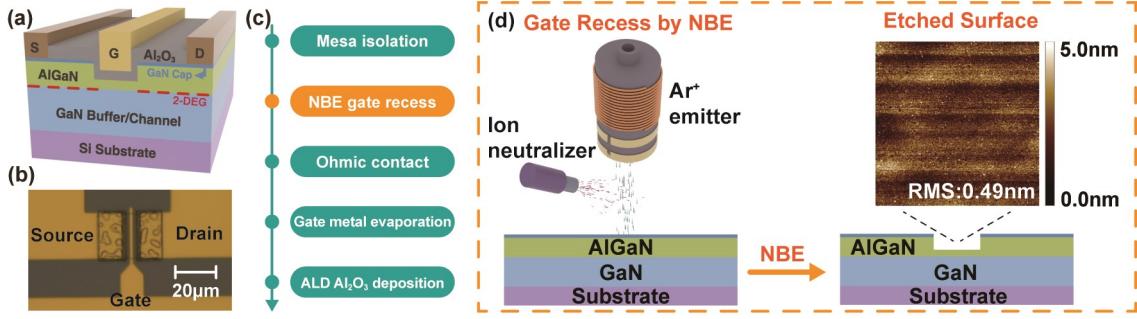


Fig.1 (a) Schematic, (b) microscopic photograph, and (c) process flow of the recessed-gate MOSHEMT. (d) NBE schematic diagram and $5\text{ }\mu\text{m} \times 5\text{ }\mu\text{m}$ surface morphology by AFM.

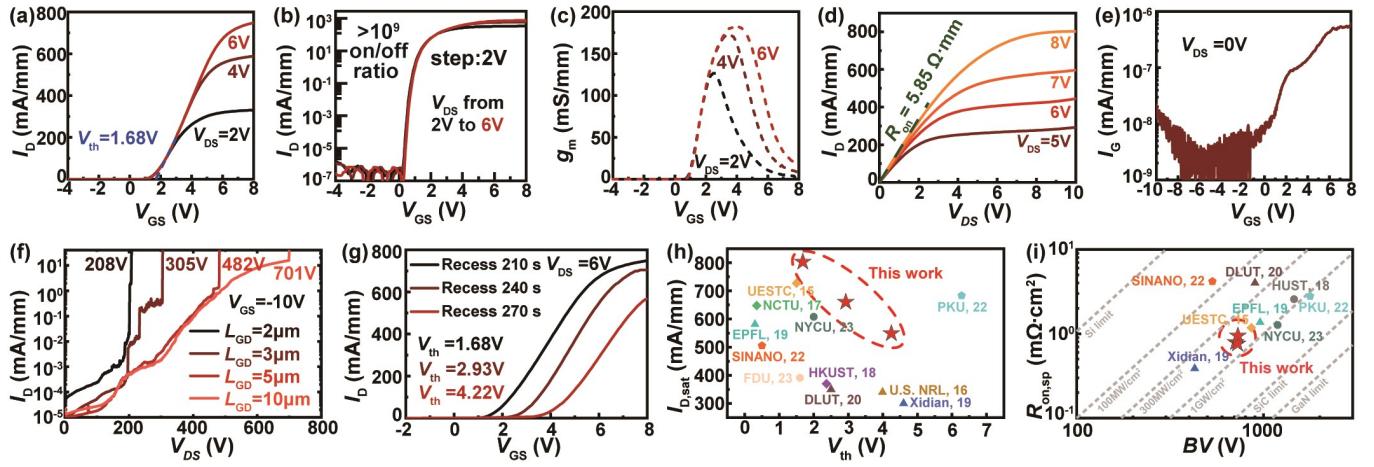


Fig.2 (a) Linear and (b) log scale transfer curves, (c) transconductance, (d) output characteristics, and (e) gate leakage of the recessed-gate MOSHEMT. (f) Breakdown characteristics of recessed-gate MOSHEMTs in off-state. (g) Devices with graded threshold voltages were achieved by controlling the etching depth. Benchmark of (h) $I_{\text{D},\text{sat}}$ versus V_{th} and (i) $R_{\text{on},\text{sp}}$ versus breakdown voltage for state-of-the-art recessed-gate GaN MOSHEMTs.

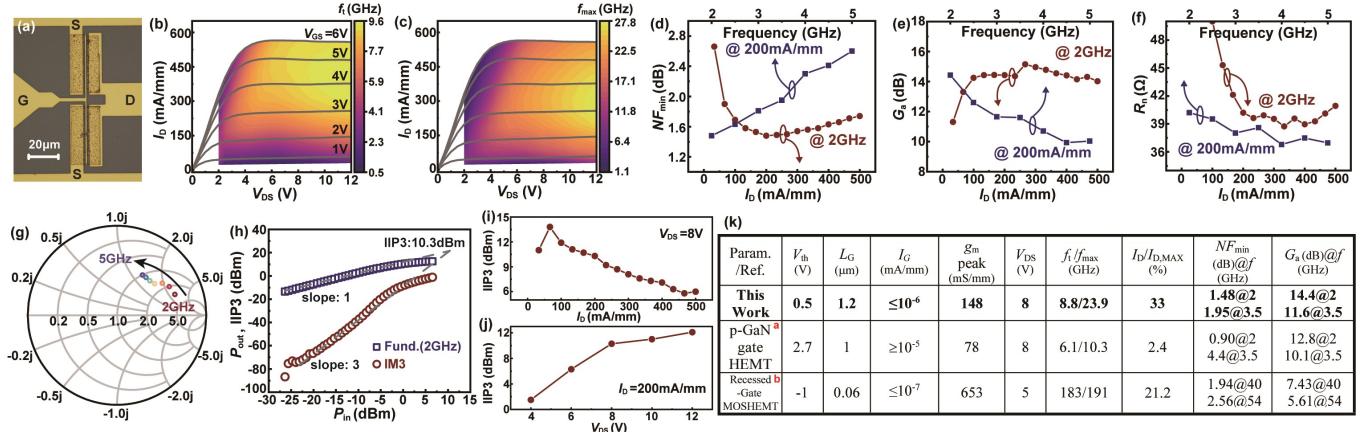


Fig.3 (a) Microscopic photograph of the recessed-gate MOSHEMT with a double-finger structure. Contour charts of V_{DS} - and I_{D} -dependent (b) f_t and (c) f_{max} for the recessed-gate MOSHEMT. I_{D} - or frequency dependence of (d) NF_{min} , (e) G_a , and (f) R_n of the recessed-gate MOSHEMT. (g) Frequency dependence of I_{opt} and +0.2 dB noise circles for 2 GHz at I_{D} of 200 mA/mm and V_{DS} of 8 V. (h) Two-tone third-order load-pull measurements for the recessed-gate MOSHEMT biased at I_{D} of 200 mA/mm and V_{DS} of 8V with source impedance matched at the I_{opt} for 2 GHz. (i) I_{D} - and (j) V_{DS} -dependence of IIP3 for the recessed-gate MOSHEMT. (k) A comparison of device parameters and RF performance for the E-mode p-GaN gate HEMT and D-mode recessed-gate MOSHEMT enabled by NBE. ^a Zhou *et al.*, IEEE EDL, Vol.44, Iss.9, 2023. ^b Lin *et al.*, IEEE EDL, Vol.38, Iss.6, 2017.